"视频测量"实验指导书(一)

一、实验课程编码: 103005

- 二、实验课程名称:视频测量
- 三、实验项目名称: 监视器调整与反射损耗测量(综合性、设计性实验)
- 四、实验目的

学习图像监视器的日常调整方法。了解反射损耗的意义及对图像的影响,掌握电缆延时法测量反射损耗。通过测量信号的幅度和时间参数,学习使用视频综合测试仪和测试信号发生器。了解 2T 脉冲参数,了解 100%和 75%彩条的区别。

五、主要设备

VM700T 视频综合测试仪,TG8000 测试信号发生器,PVM-14M4E 图像监视器。

六、实验内容

- 1. 调整监视器的亮度、对比度、色度、色温等参数。
- 2. 测量 100%和 75%彩条信号。
- 3. 测量 2T 正弦平方脉冲。
- 4. 使用延时电缆法测量 100 欧终端电阻的反射损耗。
- 5. 测量反射波延时,估算电缆长度。

七、实验步骤

- 1. 系统连接: 被测设备为长电缆和 100 欧终端电阻。
- 2. 监视器的日常调整:
 - (1)利用 PLUGE 信号调亮度。
 - (2)利用阶梯波信号调对比度。
 - (3)利用 100%彩条信号和监视器 BLUE ONLY 功能调色饱和度。
 - (4)利用监视器菜单调色温为 D93。

3. 100%和 75%彩条信号测量:

- (1) 使用 VM700 压差复位 "Reset Diffs" 功能测量两种彩条的白条幅度。
- (2)利用低通滤波器分别测量两种彩条的黄条亮度电平。
- (3)利用高通滤波器分别测量两种彩条的黄条色度电平。

(4) 计算两黄条亮度/色度电平之间的比值(低比高)。

4. 2T 正弦平方脉冲的测量:

- (1)选2T正弦平方脉冲和条信号。
- (2) 测量 2T 脉冲的幅度,确定其半幅度。
- (3) 使用 VM700 光标功能测量时间,测量其半幅宽。
- (4)测量填充副载波脉冲宽度(使用冻结功能)。
- 5. 反射损耗的测量:
 - (1)选2T正弦平方脉冲和条信号。
- (2)取下电缆终接电阻,测量终端开路全反射波幅度 A1。同时观察反射波 对图像的影响。

(3) 电缆终端接上 100 欧终端电阻,测量反射波幅度 A2。代入公式计算:

反射损耗
$$\rho = 20 \lg \frac{A_1}{A_2} dB$$

6. 测量反射波延时,估算电缆长度:

测量入射波 A0 与反射波 A1 的时间间隔,估算电缆长度。电缆延时量取每 20cm 延时 1 ns,注意反射波 A1 走了两倍电缆长度。

八、实验结果

1. 画出系统连接图, 注明仪器及接口名称。

2. 说明监视器 4 个参数如何调整,分别调的是什么(信号/参数)。

3. 记录两种彩条信号测量参数,说明其同异处及"75%"的由来。

4. 记录两个正弦平方脉冲宽度,说明该 2T 脉冲是属于哪个制式 (PAL/NTSC)。

5. 填充副载波的脉冲是多少 T 脉冲。

 测量并计算 100 欧终端电阻的反射损耗值,通过观察说明反射波对图像 的影响。简要分析反射损耗越大越好还是越小越好。

7. 测量反射波延时量并估算出电缆长度。

"视频测量"实验指导书(二)

一、实验课程编码: 103005

二、实验课程名称:视频测量

三、实验项目名称:模拟复合视频信号测量(综合性、设计性实验)

四、实验目的

通过实验,全面掌握模拟复合视频信号测量的原理和方法,进一步了解并学 会使用测量仪器的各种功能。

五、主要设备

VM700 视频综合测试仪,TG8000 测试信号发生器,PVM-14M4E 图象监视器,TL5430 视频处理器。

六、实验内容

1. 信噪比测量。

2. 频率特性测量。

3. DG/DP 测量。

4. 色亮增益差、时延差测量。

5. 亮度非线性测量。

6. K 系数测量。

七、实验步骤:

1. 系统连接: 被测设备为 TL5430 视频处理器。

2. 信噪比测量:

(1)选50%平场信号测量,使用 Average 平均功能。

(2)选滤波器: 100KHz 高通、5MHz 低通、*副载波陷波,再选统一加权。 注意噪声电平和信噪比的区别。

3. 频率特性测量:

(1) 选多波群信号测幅频特性,注意最大偏差所在频率及偏差的正负符号。

(2)选 SinX/X 信号测幅频特性和相频特性(群时延)。使用垂直扩展功能读取数值。

4. DG/DP 测量:

(1)选17行ITS插入测试行信号测量,注意测量数值单位。

(2) 选调制阶梯波信号测量,使用测量定位功能(自动/手动)。

5. 色亮增益差、时延差测量:

(1) 使用 17 行 ITS 插入测试行信号测量,注意要计算增益差值,时延差值 注意正负符号。

(2)使用 2T 脉冲和条信号测量,注意用的是其中的填充副载波 20T 脉冲,使用脉冲定位功能 Menu-Acquire-Special pos。

6. 亮度非线性测量:

(1) 使用 17 行 ITS 插入测试行信号测量。

(2) 使用 5 阶阶梯波测量, 使用自动扫描功能。

7. K 系数测量:

(1) 使用 17 行 ITS 插入测试行信号测量。

(2)使用 2T 脉冲和条信号测量,使用测量定位功能。注意 3 个定位参数: Bar Top\Ref Pos\Pulse Pos。

八、实验结果

1. 画出系统连接图,注明仪器及接口名称。

 分别记录不加权/加权信杂比,注明所使用的滤波器。简单说明加权信杂 比为什么比不加权要高?

3. 分别记录两种方法测量的幅频特性值,记录群时延值,注明测量值所在的频率。再测量并记录亮度非线性值。

4. 记录 DG/DP 测量值,简单说明 PAL 制将 DP 失真转换成了什么,对收 看图像有什么影响?

5. 记录色亮增益差/时延差值,说明亮度和色度哪个增益大,哪个增益小, 哪个超前,哪个滞后?

6. 记录 K 系数值,说明 Kpb 和 PB Ratio 同为脉冲与条的比值,为什么不一样? 它们之间存在什么关系?

4

"视频测量"实验指导书(三)

一、实验课程编码: 103005

- 二、实验课程名称:视频测量
- 三、实验项目名称:模拟分量视频信号测量(综合性、设计性实验)
- 四、实验目的

通过实验,掌握模拟分量视频信号测量的特殊方法,了解色域失真的含义和 测量方法,学会使用数字波形监视器。

五、主要设备

VM700 视频综合测试仪,TG8000 测试信号发生器,WFM8300 数字波形 监视器,PVM-14M4E 图像监视器,AJ-D455 数字录像机。

- 六、实验内容
- 1. "闪电"测量
- 2. "蝴蝶结" 测量
- 3. "钻石"显示
- 4. "箭头"显示
- 七、实验步骤

1. 系统连接: 被测设备为 AJ-D455 数字录像机的 D/A 转换及编码电路。

2. 闪电测量:

(1)使用彩条信号进行闪电测量"Lightning",使用"Amplitude"功能根据 不同彩条选择电子刻度。

(2)使用"Draw Numbers"功能显示详细数据。上部为各色点 Pb 值,中 部两侧为各色点 Y 值,下部为各色点 Pr 值。

3. 蝴蝶结测量:

(1)选蝴蝶结信号,注意该信号非全场信号,仅在图像的上下端。使用图像 功能中的选行线选取。

- (2) 选蝴蝶结 "Bowtie" 进行测量。
- 4. 钻石显示:
 - (1)选阶梯波信号,使用WFM8300测量。

(2) 测量色差分量数据 WFM AS YPbPr, 使用光标键 CURSOR。

(3) 测量 RGB 分量数据 WFM AS RGB。使用增益键 GAIN。

(4) 按色域键 GAMUT,选 DIAMOND 观察钻石显示。上部钻石由水平 B-G 和垂直 B+G 组成,下部钻石由水平 R-G 和垂直 R+G 组成

5. 箭头显示:

(1)选阶梯波信号,使用WFM8300测量。

(2)按色域键 GAMUT,选 ARROWHEAD 观察箭头显示。右上斜线表示 100% 彩条峰值 950mV,右下斜线表示同步头电平-300mV。

八、实验结果

1. 画出系统连接图,注明仪器及接口名称。

2. 利用"闪电"测量记录 Pb、Pr、Y 的最大幅度误差,注明分别出现在哪 个色点上?

3. 利用"蝴蝶结"测量记录 Pb、Pr 相对 Y 的幅度差和时延差,计算 Pb、 Pr 间的幅度差和时延差。

4. 分别画出阶梯波色差分量和 RGB 分量各信号波形,标明所测 6 个幅度峰-峰值。

5. 简略画出阶梯波钻石显示图形,结合所测波形数据说明该阶梯波信号为 什么被称为合法但无效信号?

6. 简略画出阶梯波"箭头"显示图形,说明该显示的含意。

"视频测量"实验指导书(四)

一、实验课程编码: 103005

二、实验课程名称:视频测量

三、实验项目名称:数字分量视频信号测量(综合性、设计性实验)

四、实验目的

通过实验,了解并掌握 SDI 串行数字视频信号的测量,包括正程视频数据 和逆程辅助数据的测量。

五、主要设备

VM700 视频综合测试仪,**TG8000** 测试信号发生器,**PVM-14M4E** 图象监视器,**AJ-D455** 数字录像机。

六、实验内容

1. 眼图测量。

2. 抖动测量。

3. 格式监视。

4. 辅助数据分析。

七、实验步骤

1. 系统连接: 被测设备为 AJ-D455 数字录像机的数字电路。

2. 眼图测量:

(1) 选眼图 Eye。

(2)选 Measure,选测量参数。包括幅度、上升/下降时间、上/下过冲、直流偏移、抖动。

(3) 换一段长电缆再测量眼图参数。

3. 抖动测量:

(1)选抖动 Jitter。上部为解调的抖动波形显示,下部为经 FFT 变换的抖动频谱显示。注意 Timing 为定时抖动,Alignment 为校正抖动。

(2) 换单位 Cursors/Units-Jitter Units,将 PS 换为 UI。

(3) 换滤波器,将 10Hz 换为 1KHz。

4. 格式监视:

7

(1) 选格式监视。

(2) 观察反转显示的格式错误。

5. 辅助数据 ANC 分析:

(1) 选辅助数据 ANC 分析。

(2) 记录一个 TRS 定时基准信号, 共 4 个字节。

(3) 记录一个 AES 音频数据包头, 共 6 个字节。

(4) 记录一个 EDH 数据包头, 共 6 个字节。注意其所在行号和其后无 ANC 数据行的行号。

八、实验结果

1. 画出系统连接图, 注明仪器及接口名称。

 分别记录长短电缆的眼图测量值。找出最大变化的参数并说明原因及对 接收图像的影响。

3. 记录抖动测量的两个测量值。改变抖动单位记录抖动测量值,改变滤波器记录抖动测量值。

4. 记录格式监视发现的错误, 解释其含意。

5. 记录一个 TRS 信号值,分析其数据结构,分析该信号后的数据定时。

6. 记录一个 AES 音频数据包头,分析其数据结构。

7. 记录一个 EDH 数据包头, 说明其插入位置并分析其数据结构。

8、无 ANC 数据行是哪几行,为什么设为空行(不传数据)?

"视频测量"实验指导书(五)

一、实验课程编码: 103005

二、实验课程名称:视频测量

三、实验项目名称:压缩数字视频信号测量(综合性、设计性实验)

四、实验目的

通过实验,了解 MPEG-2 数字电视码流的结构,掌握码流分析及相关码流参数测量的基本方法,学会应用码流分析仪进行实际系统测量分析的方法。

五、主要设备

AD-953 码流分析仪, **TG8000** 信号发生器, **DVMD-MPEG** 测试解码器, **PVM-14M4E** 图像监视器。

六、实验内容

1. TS 流分析。

2. PES 流分析。

3. TS 流离线分析。

4. TS 流在线监测。

七、实验步骤

1. 系统连接: 被测设备为 DVG MPEG 信号发生器。

2. TS 流分析:

(1) 打开分析软件 TS Analyzer。

(2) 打开文件 E:\\Test Streams asitest.mpg。

(3)分析码流的 PSI 信息,观察、记录并分析 PAT 及 PMT 中的内容。

(4) 点 Mux stats (综合统计),选 Bit Rate 单位为码率,不选单位为百分比。

(5) 点 PID Bit Rate 查看不同 PID 值数据的详细码率。

(6)点 ITR (瞬时传输参数),点选一路节目视频(以不同颜色区分),点中 某一时刻(以秒数表示的时间)。界面下部位置状态条中'<'和'>'用来细选 时间点。

(7) 观察并记录 PCR 参数及 TS 流总码率。

Inaccuracy 不准确度Clock Drift 时钟漂移Overall-jitter 总抖动Trans RateTrans RateTS 流总码率Freq-Offset 频偏Interval 传送间隔

3. PES 流分析:

(1) 打开分析软件 PES Analyzer。

(2) 打开文件 E:\\Test Streams\ asitest.mpg。注意等候时间稍长,界面 右下角有进程状态条。

(3) 在树形结构图中选节目1的视频 V。

(4) 点 PTS/DTS View,点放大镜图标,直至图上出现 IBP 标记。注意图示的 纵坐标为 PTS 与 DTS 的间隔,用 ms 表示。

(5)选一个 I 帧及其后面的 B、P 帧观察记录各帧的 PTS/DTS 值,点左下角的前/后图标选帧。

(6) 观察记录 I 帧 PES 包头表示的图像参数。

AU Number 进入单元, Stream Type 流种类,
PES Packet Number PES 包号, PTS 显示时间标记,
DTS 解码时间标记, Frame Rate 帧速率,
Frame Type 帧类型, Aspect Ratio 宽高比,
Profile & Lever 类与级, Chroma Format 色度格式,
Picture Size 图像尺寸, Picture Structure 图像结构。

4. TS 流离线分析:

- (1) 连接 MPEG 信号发生器和码流分析仪 TS ASI OUT→ASI+TS INPUT。
- (2) 打开 TS 流记录软件 TS Monitor-Recorder。
- (3) 在 File 菜单中点 Create File 建立文件,起文件名。设置参数为默认 值。
- (4) 点开始记录图标 Start,记录一段 DVG MPEG 信号发生器的信号。
- (5) 用 PES 流分析软件分析其 PTS/DTS 标记,观察并记录结果。
- 5. TS 流在线监测
- (1) 打开监测软件 TS Monitor Plus。
- (2) 设置连接参数 Stream—Configuration—ASI。

(3) 点连接标记连接外部输入信号源,等待接续。

(4)点!图标查看三个级别的监测错误。注意绿灯表示无错误,黄灯表示曾 经发生错误,红灯表示正在发生错误。刷新记录按刷新图标 Reset Events。双 击错误显示该项监测的限值,有些可以修改。右键点击错误后选 Explain Test 可 查看出错的详细解释。

八、实验结果

1. 画出系统连接图,注明仪器及接口名称。

2. 记录 TS 流内含节目数及每个节目的视、音频路数。

分别记录 TS 流中两个不同节目的 V、A 的 PID 值、码率及占总码率的百分比。记录 TS 流总码率及上述两个节目 V 中 PCR 的五个参数。

3. 记录 I 帧 PES 包头中的 8 个图像参数。

记录以 I 帧打头包含两个 P 帧的一组图像序列的进入单元号和 PES 包号、 PTS/DTS 数值及其间隔。根据时间标记画出解码顺序和显示顺序的对应关系。

4. 录制一段码流并分析记录其中 PTS/DTS 值,说明有何错误及可能对接收 机产生的影响。

5. 记录三个优先级监测中发现的错误,说明错误内容及对接收节目的影响。

"视频测量"实验指导书(六)

一、实验课程编码: 103005

二、实验课程名称:视频测量

三、实验项目名称: 数字电视图像质量主观评价(综合性实验)

四、实验目的

认识数字电视图像质量主观评价的重要性及其原理,通过实际参与评价过程 了解主观评价的操作程序,初步掌握观察并评价数字电视图像质量的要点与方 法。

五、主要设备

PowerMac G5 工作站、BVM-D32 高清彩色监视器。

六、实验内容

播放主观评价测试序列图像,观察图像的质量差异并给予相应的分数。

七、实验步骤

在专门的观看室内进行。观看室照明的色温、照度等光学条件和环境背景应符合要求。观看室内前、左、右三面应挂上有褶的白色漫反射布,背后一面应为灰色的低反射率幕布。前方监视器背后要有适量的衬托光,左右两侧要有适量的漫反射照明光。

2. 调整监视器至标准状态。亮度、对比度、色饱和度和色温。

3. 确定合适的观看距离 (PVD), 根据屏幕高度定。最大观看角度 30°。

屏幕对角线		屏幕高度(H)	PVD
4: 3	16: 9	(m)	(H)
12	15	0.18	9
15	18	0.23	8
20	24	0.30	7
29	36	0.45	6
60	73	0.91	5
>100	>120	>1.53	3~4

4. 选择合适的测试图像序列:基准图像和被测图像,静止图像和运动图像。

5. 观看员分批坐在指定座椅上,发给评分卡和笔。

6. 示范阶段:

向就座的观看员详细正确地介绍测试方法和存在的质量损伤类型,并进行评价示范显示。示范显示应该使用正式测试的图像或序列以外的图像或序列,这些 图像或序列应与正式测试中使用的图像或序列具有可比性。在正式测试开始前, 需要引入 3 到 5 个测试周期来稳定观看员的判断力,这些测试数据不纳入测试 结果的统计之中。

7. 评价打分阶段:

对于静止图像,其基准图像和被测图像交替显示 3 次,每次分别持续 3~4 秒钟,然后评分;对于运动图像,其基准图像和被测图像交替显示 2 次,每次分 别持续约 10 秒钟,然后评分。在不同测试图像的一连串显示评分过程中,基准 图像与被测图像的先后次序以伪随机方式变动。

一个评价测试阶段包括示范说明在内总时间一般不要超过半小时。 八、实验结果:

评分采用比较制,使用无数字连续标度的双刺激连续质量评分表。在评分卡 上画出代表图像相应质量的横线。第一图像和第二图像评分分别记录在评分表相 应序号的某对标度线 A 和 B 上。完成后统一交给老师,以便最后利用数理统计 和概率分布理论进行统计和分析。

